Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Immunol ; 24(10): 1671-1684, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37709985

RESUMO

Iron metabolism is pivotal for cell fitness in the mammalian host; however, its role in group 3 innate lymphoid cells (ILC3s) is unknown. Here we show that transferrin receptor CD71 (encoded by Tfrc)-mediated iron metabolism cell-intrinsically controls ILC3 proliferation and host protection against Citrobacter rodentium infection and metabolically affects mitochondrial respiration by switching of oxidative phosphorylation toward glycolysis. Iron deprivation or Tfrc ablation in ILC3s reduces the expression and/or activity of the aryl hydrocarbon receptor (Ahr), a key ILC3 regulator. Genetic ablation or activation of Ahr in ILC3s leads to CD71 upregulation or downregulation, respectively, suggesting Ahr-mediated suppression of CD71. Mechanistically, Ahr directly binds to the Tfrc promoter to inhibit transcription. Iron overload partially restores the defective ILC3 compartment in the small intestine of Ahr-deficient mice, consistent with the compensatory upregulation of CD71. These data collectively demonstrate an under-appreciated role of the Ahr-CD71-iron axis in the regulation of ILC3 maintenance and function.


Assuntos
Infecções por Enterobacteriaceae , Imunidade Inata , Animais , Camundongos , Linfócitos , Estado Nutricional , Ferro , Receptores da Transferrina/genética , Mamíferos
2.
Trends Immunol ; 44(3): 150-152, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36739206

RESUMO

Distinguishing between commensal and pathogenic bacteria to generate appropriate responses (tolerance vs. immunogenicity) is a key decision that the human immune system must make to maintain homeostasis. Recently, Clasen and colleagues reported a distinct allosteric interaction between bacterial flagellin and host Toll-like receptor 5 (TLR5), which may shed light on these differences.


Assuntos
Flagelina , Receptor 5 Toll-Like , Humanos , Bactérias
3.
Cell Rep ; 42(1): 111963, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36640340

RESUMO

The Aryl hydrocarbon receptor (Ahr) regulates the differentiation and function of CD4+ T cells; however, its cell-intrinsic role in CD8+ T cells remains elusive. Herein we show that Ahr acts as a promoter of resident memory CD8+ T cell (TRM) differentiation and function. Genetic ablation of Ahr in mouse CD8+ T cells leads to increased CD127-KLRG1+ short-lived effector cells and CD44+CD62L+ T central memory cells but reduced granzyme-B-producing CD69+CD103+ TRM cells. Genome-wide analyses reveal that Ahr suppresses the circulating while promoting the resident memory core gene program. A tumor resident polyfunctional CD8+ T cell population, revealed by single-cell RNA-seq, is diminished upon Ahr deletion, compromising anti-tumor immunity. Human intestinal intraepithelial CD8+ T cells also highly express AHR that regulates in vitro TRM differentiation and granzyme B production. Collectively, these data suggest that Ahr is an important cell-intrinsic factor for CD8+ T cell immunity.


Assuntos
Linfócitos T CD8-Positivos , Memória Imunológica , Humanos , Animais , Camundongos , Receptores de Hidrocarboneto Arílico/genética , Estudo de Associação Genômica Ampla , Diferenciação Celular
4.
iScience ; 25(9): 105004, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36093065

RESUMO

Glucose, the critical energy source in the human body, is considered a potential risk factor in various autoimmune diseases when consumed in high amounts. However, the roles of glucose at moderate doses in the regulation of autoimmune inflammatory diseases and CD4+ T cell responses are controversial. Here, we show that while glucose at a high concentration (20% w/v) promotes intestinal inflammation, it suppresses colitis at a moderate dose (6% w/v), which increases the proportion of intestinal regulatory T (Treg) cells but does not affect effector CD4+ T cells. Glucose treatment promotes Treg cell differentiation but it does not affect Treg stability. Feeding glucose alters gut microbiota compositions, which are not involved in the glucose induction of Treg cells. Glucose promotes aryl hydrocarbon receptor (AhR) activation to induce Treg polarization. These findings reveal the different effects of glucose at different doses on the intestinal immune response.

5.
Nat Microbiol ; 7(7): 1087-1099, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35668113

RESUMO

Group 3 innate lymphoid cells (ILC3s) produce interleukin (IL)-22 and coordinate with other cells in the gut to mount productive host immunity against bacterial infection. However, the role of ILC3s in Salmonella enterica serovar Typhimurium (S. Typhimurium) infection, which causes foodborne enteritis in humans, remains elusive. Here we show that S. Typhimurium exploits ILC3-produced IL-22 to promote its infection in mice. Specifically, S. Typhimurium secretes flagellin through activation of the TLR5-MyD88-IL-23 signalling pathway in antigen presenting cells (APCs) to selectively enhance IL-22 production by ILC3s, but not T cells. Deletion of ILC3s but not T cells in mice leads to better control of S. Typhimurium infection. We also show that S. Typhimurium can directly invade ILC3s and cause caspase-1-mediated ILC3 pyroptosis independently of flagellin. Genetic ablation of Casp1 in mice leads to increased ILC3 survival and IL-22 production, and enhanced S. Typhimurium infection. Collectively, our data suggest a key host defence mechanism against S. Typhimurium infection via induction of ILC3 death to limit intracellular bacteria and reduce IL-22 production.


Assuntos
Imunidade Inata , Infecções por Salmonella , Animais , Caspase 1/metabolismo , Flagelina/metabolismo , Linfócitos/metabolismo , Camundongos , Piroptose , Infecções por Salmonella/metabolismo , Salmonella typhimurium/fisiologia
6.
J Environ Manage ; 302(Pt A): 114031, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34735836

RESUMO

In order to realize the sustainable utilization of waste oyster shell and develop a targeted removal technology for cadmium. A novel ion-imprinted oyster shell material (IIOS) was prepared by surface imprinting technique. The prepared samples were characterized by scanning electron microscope, Fourier infrared spectrometer, X-ray diffractometer, thermogravimetric analysis and N2 adsorption-desorption. The adsorption performances of IIOS for Cd(II) from aqueous solution were studied by the single factor sequential batch, kinetics, isotherms, selectivity and recycling experiments. The characterization researches showed that IIOS was successfully prepared. The adsorption experiments indicated that the adsorption process reached equilibrium within 240 min; the maximum adsorption capacity was up to 69.1 mg g-1 with the initial Cd(II) concentration of 75 mg L-1 at pH 5; the adsorption process fitted well to the pseudo-second-order model and the Langmuir isotherm model, which revealed the chemisorption characteristic of Cd(II). Moreover, IIOS exhibited a good targeted adsorption of Cd(II) in several binary competition systems owing to the present of these imprinted cavities. The recycling experiment showed that the targeted removal ratio of IIOS for Cd(II) remained above 80% after used six times. The results of this study indicated that it is a promising prospect for waste oyster shell used as IIOS to dispose heavy metals in wastewater.


Assuntos
Ostreidae , Poluentes Químicos da Água , Adsorção , Animais , Cádmio/análise , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/análise
7.
Front Immunol ; 12: 730116, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745099

RESUMO

Klebsiella pneumoniae found in the normal flora of the human oral and intestinal tract mainly causes hospital-acquired infections but can also cause community-acquired infections. To date, most clinical trials of vaccines against K. pneumoniae have ended in failure. Furthermore, no single conserved protein has been identified as an antigen candidate to accelerate vaccine development. In this study, we identified five outer membrane proteins of K. pneumoniae, namely, Kpn_Omp001, Kpn_Omp002, Kpn_Omp003, Kpn_Omp004, and Kpn_Omp005, by using reliable second-generation proteomics and bioinformatics. Mice vaccinated with these five KOMPs elicited significantly higher antigen-specific IgG, IgG1, and IgG2a. However, only Kpn_Omp001, Kpn_Omp002, and Kpn_Omp005 were able to induce a protective immune response with two K. pneumoniae infection models. These protective effects were accompanied by the involvement of different immune responses induced by KOMPs, which included KOMPs-specific IFN-γ-, IL4-, and IL17A-mediated immune responses. These findings indicate that Kpn_Omp001, Kpn_Omp002, and Kpn_Omp005 are three potential Th1, Th2, and Th17 candidate antigens, which could be developed into multivalent and serotype-independent vaccines against K. pneumoniae infection.


Assuntos
Proteínas da Membrana Bacteriana Externa/farmacologia , Vacinas Bacterianas/farmacologia , Infecções por Klebsiella/prevenção & controle , Klebsiella pneumoniae/imunologia , Desenvolvimento de Vacinas , Animais , Carga Bacteriana , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/imunologia , Vacinas Bacterianas/genética , Vacinas Bacterianas/imunologia , Modelos Animais de Doenças , Células HL-60 , Humanos , Imunogenicidade da Vacina , Infecções por Klebsiella/imunologia , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/genética , Camundongos Endogâmicos BALB C , Fagócitos/imunologia , Fagócitos/microbiologia , Fagocitose , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/farmacologia , Linfócitos T/imunologia , Linfócitos T/microbiologia , Vacinação , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/farmacologia
8.
Nat Commun ; 12(1): 4462, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294718

RESUMO

RORγt+ lymphocytes, including interleukin 17 (IL-17)-producing gamma delta T (γδT17) cells, T helper 17 (Th17) cells, and group 3 innate lymphoid cells (ILC3s), are important immune regulators. Compared to Th17 cells and ILC3s, γδT17 cell metabolism and its role in tissue homeostasis remains poorly understood. Here, we report that the tissue milieu shapes splenic and intestinal γδT17 cell gene signatures. Conditional deletion of mitochondrial transcription factor A (Tfam) in RORγt+ lymphocytes significantly affects systemic γδT17 cell maintenance and reduces ILC3s without affecting Th17 cells in the gut. In vivo deletion of Tfam in RORγt+ lymphocytes, especially in γδT17 cells, results in small intestine tissue remodeling and increases small intestine length by enhancing the type 2 immune responses in mice. Moreover, these mice show dysregulation of the small intestine transcriptome and metabolism with less body weight but enhanced anti-helminth immunity. IL-22, a cytokine produced by RORγt+ lymphocytes inhibits IL-13-induced tuft cell differentiation in vitro, and suppresses the tuft cell-type 2 immune circuit and small intestine lengthening in vivo, highlighting its key role in gut tissue remodeling.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Intestino Delgado/imunologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Animais , Diferenciação Celular , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Feminino , Perfilação da Expressão Gênica , Proteínas de Grupo de Alta Mobilidade/deficiência , Proteínas de Grupo de Alta Mobilidade/genética , Homeostase/imunologia , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Intestino Delgado/citologia , Intestino Delgado/metabolismo , Masculino , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Organoides , Proteína com Dedos de Zinco da Leucemia Promielocítica/genética , Proteína com Dedos de Zinco da Leucemia Promielocítica/metabolismo , Subpopulações de Linfócitos T/citologia , Células Th17/citologia , Células Th17/imunologia , Células Th17/metabolismo
9.
Am J Transl Res ; 13(4): 3609-3617, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34017542

RESUMO

BACKGROUND: To investigate the effect of bevacizumab combined with chemotherapy on the metastasis response rate, survival time of patients with metastatic colorectal cancer (mCRC), the incidence of complications, and the efficacy and safety of bevacizumab for mCRC were recorded. METHODS: Of 87 patients with mCRC, 42 were treated without bevacizumab (control group, CG) and 45 were treated with bevacizumab (observation group, OG). Baseline characteristics, resectability of metastases, quality of life (QOL), and short- and long-term curative effect were compared to evaluate the safety of the treatment plan in the two groups. RESULTS: After 6 months of treatment, the overall response rate (ORR) and disease control rate (DCR) of the CG were 28.57% and 59.52%, respectively, whereas the ORR and DCR of the OG were notably higher at 48.89% and 86.67%, respectively (P < 0.05). The resectability rate of metastases in the OG increased from 8.89% pretreatment to 40.00% posttreatment, whereas that of metastases in the CG increased from 11.90% pretreatment to 23.81% posttreatment. In the OG, the median survival time was 23.0 (range, 19.7-26.3) months, and the median progression-free survival (PFS) was 11.0 (range, 9.4-12.6) months. These results were all superior to those of the CG, which were 14.0 (range, 12.6-15.4) months and 6.0 (range, 4.9-7.2) months, respectively. CONCLUSION: Bevacizumab combined with first-line chemotherapy can significantly prolong survival and PFS, improve QOL, increase the resectability rate of metastases, and improve survival outcomes of patients with mCRC.

10.
Sci Immunol ; 5(48)2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32532834

RESUMO

The orphan chemoattractant receptor GPR15 is important for homing T lymphocytes to the large intestine, thereby maintaining intestinal immune homeostasis. However, the molecular mechanisms underlying the regulation of GPR15 expression remain elusive. Here, we show a central role of the aryl hydrocarbon receptor (Ahr) in promoting GPR15 expression in both mice and human, thus gut homing of T lymphocytes. Mechanistically, Ahr directly binds to open chromatin regions of the Gpr15 locus to enhance its expression. Ahr transcriptional activity in directing GPR15 expression was modulated by two transcription factors, Foxp3 and RORγt, both of which are expressed preferentially by gut regulatory T cells (Tregs) in vivo. Specifically, Foxp3 interacted with Ahr and enhanced Ahr DNA binding at the Gpr15 locus, thereby promoting GPR15 expression. In contrast, RORγt plays an inhibitory role, at least in part, by competing with Ahr binding to the Gpr15 locus. Our findings thus demonstrate a key role for Ahr in regulating Treg intestinal homing under the steady state and during inflammation and the importance of Ahr-RORγt-Foxp3 axis in regulating gut homing receptor GPR15 expression by lymphocytes.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/imunologia , Linfócitos T CD4-Positivos/imunologia , Fatores de Transcrição Forkhead/imunologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Receptores de Hidrocarboneto Arílico/imunologia , Receptores Acoplados a Proteínas G/imunologia , Receptores de Peptídeos/imunologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Feminino , Fatores de Transcrição Forkhead/genética , Humanos , Masculino , Camundongos , Camundongos Knockout , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Receptores de Hidrocarboneto Arílico/genética , Receptores Acoplados a Proteínas G/genética , Receptores de Peptídeos/genética
11.
Front Microbiol ; 10: 1991, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31555230

RESUMO

Metabolic adaptation in various environmental niches is crucial for bacterial extracellular survival and intracellular replication during infection. However, the metabolism of carbon/nitrogen sources and related regulatory mechanisms in Laribacter hongkongensis, an asaccharolytic bacterium associated with invasive infections and gastroenteritis, are still unknown. In the present study, we demonstrated that malate can be exploited as a preferred carbon source of L. hongkongensis. Using RNA-sequencing, we compared the transcription profiles of L. hongkongensis cultivated with or without malate supplementation, and observed that malate utilization significantly inhibits the use of alternative carbon sources while enhancing respiratory chain as well as central carbon, sulfur, and urease-mediated nitrogen metabolisms. The tight connection among these important metabolic pathways indicates that L. hongkongensis is capable of integrating information from different metabolism branches to coordinate the expression of metabolic genes and thereby adapt to environmental changing. Furthermore, we identified that a transcription factor, CRP, is repressed by malate-mediated metabolism while negatively regulating the effect of malate on these central metabolic pathways. Remarkably, CRP also responds to various environmental stresses, influences the expression of other transcription factors, and contributes to the biological fitness of L. hongkongensis. The regulatory network and cross-regulation enables the bacteria to make the appropriate metabolic responses and environmental adaptation.

12.
Cell Rep ; 28(1): 159-171.e4, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31269437

RESUMO

Regulatory T cells (Tregs) are pivotal for immune suppression. Cellular metabolism is important for Treg homeostasis and function. However, the exact role of mitochondrial respiration in Tregs remains elusive. Mitochondrial transcription factor A (Tfam) is essential for mitochondrial respiration and controls mitochondrial DNA replication, transcription, and packaging. Here, we show that genetic ablation of Tfam in Tregs impairs Treg maintenance in non-lymphoid tissues in the steady state and in tumors. Tfam-deficient Tregs have reduced proliferation and Foxp3 expression upon glucose deprivation in vitro. Tfam deficiency preferentially affects gene activation in Tregs through regulation of DNA methylation, with enhanced methylation in the TSDR of the Foxp3 locus. Deletion of Tfam in Tregs affects Treg homing and stability, resulting in tissue inflammation in colitis, but enhances tumor rejection. Thus, our work reveals a critical role of Tfam-mediated mitochondrial respiration in Tregs to regulate inflammation and anti-tumor immunity.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Melanoma Experimental/imunologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Linfócitos T Reguladores/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proliferação de Células/genética , Cromatina/metabolismo , Colite/genética , Colite/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA/genética , Feminino , Fatores de Transcrição Forkhead/genética , Glicólise , Inflamação/genética , Inflamação/metabolismo , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Mitocondriais/genética , Fosforilação Oxidativa , RNA-Seq , Linfócitos T Reguladores/imunologia , Fatores de Transcrição/genética , Transcriptoma/genética , Transplante Homólogo
13.
J Cell Commun Signal ; 13(1): 85-97, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30009331

RESUMO

Strontium is a drug with the bone formation and anti-resorption effects on bone. The underlying mechanisms for the dual effect of strontium on bone metabolism, especially for the anti-resorption effects remain unknown. Thus, we aim to investigate the mechanisms of effects of strontium on osteoclastogenesis. Firstly, we found that strontium decreased the levels of important biomarkers of receptor activator of nuclear factor kappa-B ligand (RANKL) which induced osteoclast differentiation, indicating that strontium might directly inhibit osteoclast differentiation. Next, we revealed that strontium enhanced Low Density Lipoprotein Receptor-Related Protein 6 (LRP6)/ß-catenin/osteoprotegerin (OPG) signaling pathway in MC3T3-E1 cells. The signaling pathway may negatively regulate osteoclastogenesis. Thus, strontium indirectly inhibited RANKL induced osteoclast differentiation. Finally, we revealed that OPG was targeted by miR-181d-5p as determined by luciferase reporter assay and downregulated by miR-181d-5p at both mRNA and protein levels as determined by western blot.

14.
Environ Microbiol ; 20(10): 3836-3850, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30187624

RESUMO

To better understand the mechanisms of bacterial adaptation in oxygen environments, we explored the aerobic living-associated genes in bacteria by comparing Clusters of Orthologous Groups of proteins' (COGs) frequencies and gene expression analyses and 38 COGs were detected at significantly higher frequencies (p-value less than 1e-6) in aerobes than in anaerobes. Differential expression analyses between two conditions further narrowed the prediction to 27 aerobe-specific COGs. Then, we annotated the enzymes associated with these COGs. Literature review revealed that 14 COGs contained enzymes catalysing oxygen-involved reactions or products involved in aerobic pathways, suggesting their important roles for survival in aerobic environments. Additionally, protein-protein interaction analyses and step length comparisons of metabolic networks suggested that the other 13 COGs may function relevantly with the 14 enzymes-corresponding COGs, indicating that these genes may be highly associated with oxygen utilization. Phylogenetic and evolutionary analyses showed that the 27 COGs did not have similar trees, and all suffered purifying selection pressures. The divergent times of species containing or lacking aerobic COGs validated that the appearing time of oxygen-utilizing gene was approximately 2.80 Gyr ago. In addition to help better understand oxygen adaption, our method may be extended to identify genes relevant to other living environments.


Assuntos
Bactérias/enzimologia , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Oxigênio/metabolismo , Aerobiose , Bactérias/classificação , Bactérias/genética , Proteínas de Bactérias/genética , Evolução Molecular , Redes e Vias Metabólicas , Filogenia
15.
Genome Biol Evol ; 10(8): 2072-2085, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30060177

RESUMO

Pandemic cholera is a major concern for public health because of its high mortality and morbidity. Mutation accumulation (MA) experiments were performed on a representative strain of the current cholera pandemic. Although the base-pair substitution mutation rates in Vibrio cholerae (1.24 × 10-10 per site per generation for wild-type lines and 3.29 × 10-8 for mismatch repair deficient lines) are lower than that previously reported in other bacteria using MA analysis, we discovered specific high rates (8.31 × 10-8 site/generation for wild-type lines and 1.82 × 10-6 for mismatch repair deficient lines) of base duplication or deletion driven by large-scale copy number variations (CNVs). These duplication-deletions are located in two pathogenic islands, IMEX and the large integron island. Each element of these islands has discrepant rate in rapid integration and excision, which provides clues to the pandemicity evolution of V. cholerae. These results also suggest that large-scale structural variants such as CNVs can accumulate rapidly during short-term evolution. Mismatch repair deficient lines exhibit a significantly increased mutation rate in the larger chromosome (Chr1) at specific regions, and this pattern is not observed in wild-type lines. We propose that the high frequency of GATC sites in Chr1 improves the efficiency of MMR, resulting in similar rates of mutation in the wild-type condition. In addition, different mutation rates and spectra were observed in the MA lines under distinct growth conditions, including minimal media, rich media and antibiotic treatments.


Assuntos
Pareamento de Bases/genética , Cólera/epidemiologia , Cólera/microbiologia , Deleção de Genes , Duplicação Gênica , Pandemias , Vibrio cholerae/genética , Cromossomos Bacterianos/genética , Meios de Cultura , Período de Replicação do DNA/efeitos dos fármacos , Ilhas Genômicas , Humanos , Taxa de Mutação , Reprodutibilidade dos Testes , Rifampina/farmacologia , Vibrio cholerae/efeitos dos fármacos
16.
J Infect Dis ; 218(2): 197-207, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29346682

RESUMO

Although bats are known to harbor Middle East Respiratory Syndrome coronavirus (MERS-CoV)-related viruses, the role of bats in the evolutionary origin and pathway remains obscure. We identified a novel MERS-CoV-related betacoronavirus, Hp-BatCoV HKU25, from Chinese pipistrelle bats. Although it is closely related to MERS-CoV in most genome regions, its spike protein occupies a phylogenetic position between that of Ty-BatCoV HKU4 and Pi-BatCoV HKU5. Because Ty-BatCoV HKU4 but not Pi-BatCoV HKU5 can use the MERS-CoV receptor human dipeptidyl peptidase 4 (hDPP4) for cell entry, we tested the ability of Hp-BatCoV HKU25 to bind and use hDPP4. The HKU25-receptor binding domain (RBD) can bind to hDPP4 protein and hDPP4-expressing cells, but it does so with lower efficiency than that of MERS-RBD. Pseudovirus assays showed that HKU25-spike can use hDPP4 for entry to hDPP4-expressing cells, although with lower efficiency than that of MERS-spike and HKU4-spike. Our findings support a bat origin of MERS-CoV and suggest that bat CoV spike proteins may have evolved in a stepwise manner for binding to hDPP4.


Assuntos
Betacoronavirus/fisiologia , Quirópteros , Dipeptidil Peptidase 4/metabolismo , Evolução Molecular , Receptores Virais/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus , Animais , Betacoronavirus/classificação , Betacoronavirus/genética , Betacoronavirus/isolamento & purificação , Células HEK293 , Humanos , Filogenia , Ligação Proteica , Análise de Sequência de DNA , Glicoproteína da Espícula de Coronavírus/genética
17.
J Infect Dis ; 216(2): 245-253, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28633319

RESUMO

Staphylococcusaureus is a severe pathogen found in the community and in hospitals. Most notably, methicillin-resistant S. aureus (MRSA) is resistant to almost all antibiotics, which is a growing public health concern. The emergence of drug-resistant strains has prompted the search for alternative treatments such as immunotherapeutic approaches. Previous research showed that S. aureus exploit the immunomodulatory attributes of adenosine to escape host immunity. In this study, we investigated adenosine synthase A (AdsA), an S. aureus cell wall-anchored enzyme as possible targets for immunotherapy. Mice vaccinated with aluminum hydroxide-formulated recombinant AdsA (rAdsA) induced high-titer anti-AdsA antibodies, thereby providing consistent protection in 3 mouse infection models when challenged with 2 S. aureus strains. The importance of anti-AdsA antibody in protection was demonstrated by passive transfer experiments. Moreover, AdsA-specific antisera promote killing S. aureus by immune cells. Altogether, our data demonstrate that the AdsA is a promising target for vaccines and therapeutics development to alleviate severe S. aureus diseases.


Assuntos
Anticorpos Antibacterianos/farmacologia , Proteínas de Bactérias/imunologia , Imunização Passiva , Ligases/imunologia , Infecções Cutâneas Estafilocócicas/terapia , Adenosina/biossíntese , Animais , Antibacterianos/uso terapêutico , Modelos Animais de Doenças , Feminino , Imunoterapia , Camundongos , Camundongos Endogâmicos BALB C , Coelhos , Staphylococcus aureus/enzimologia
18.
BMC Microbiol ; 17(1): 73, 2017 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-28347342

RESUMO

BACKGROUND: Genomic islands (GIs) are genomic regions that reveal evidence of horizontal DNA transfer. They can code for many functions and may augment a bacterium's adaptation to its host or environment. GIs have been identified in strain J2315 of Burkholderia cenocepacia, whereas in strain AU 1054 there has been no published works on such regions according to our text mining and keyword search in Medline. RESULTS: In this study, we identified 21 GIs in AU 1054 by combining two computational tools. Feature analyses suggested that the predictions are highly reliable and hence illustrated the advantage of joint predictions by two independent methods. Based on putative virulence factors, four GIs were further identified as pathogenicity islands (PAIs). Through experiments of gene deletion mutants in live bacteria, two putative PAIs were confirmed, and the virulence factors involved were identified as lipA and copR. The importance of the genes lipA (from PAI 1) and copR (from PAI 2) for bacterial invasion and replication indicates that they are required for the invasive properties of B. cenocepacia and may function as virulence determinants for bacterial pathogenesis and host infection. CONCLUSIONS: This approach of in silico prediction of GIs and subsequent identification of potential virulence factors in the putative island regions with final validation using wet experiments could be used as an effective strategy to rapidly discover novel virulence factors in other bacterial species and strains.


Assuntos
Burkholderia cenocepacia/genética , Ilhas Genômicas/genética , Genômica , Fatores de Virulência/genética , Fatores de Virulência/isolamento & purificação , Células A549 , Aderência Bacteriana , Proteínas de Bactérias/genética , Composição de Bases , Infecções por Burkholderia/microbiologia , Burkholderia cenocepacia/crescimento & desenvolvimento , Burkholderia cenocepacia/patogenicidade , Técnicas de Cultura de Células , Contagem de Colônia Microbiana , Biologia Computacional/métodos , DNA Bacteriano , Deleção de Genes , Transferência Genética Horizontal , Genes Bacterianos/genética , Genoma Bacteriano/genética , Humanos
19.
PLoS One ; 12(2): e0171281, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28158288

RESUMO

Wnt signaling pathways are essential for bone formation. Previous studies showed that Wnt signaling pathways were regulated by miR-375. Thus, we aim to explore whether miR-375 could affect osteogenesis. In the present study, we investigated the roles of miR-375 and its downstream targets. Firstly, we revealed that miR-375-3p negatively modulated osteogenesis by suppressing positive regulators of osteogenesis and promoting negative regulators of osteogenesis. In addition, the results of TUNEL cell apoptosis assay showed that miR-375-3p induced MC3T3-E1 cell apoptosis. Secondly, miR-375-3p targeted low-density lipoprotein receptor-related protein 5 (LRP5), a co-receptor of the Wnt signaling pathways, and ß-catenin as determined by luciferase activity assay, and it decreased the expression levels of LRP5 and ß-catenin. Thirdly, the decline of protein levels of ß-catenin was determined by immunocytochemistry and immunofluorescence. Finally, silence of LRP5 in osteoblast precursor cells resulted in diminished cell viability and cell proliferation as detected by WST-1-based colorimetric assay. Additionally, all the parameters including the relative bone volume from µCT measurement suggested that LRP5 knockout in mice resulted in a looser and worse-connected trabeculae. The mRNA levels of important negative modulators relating to osteogenesis increased after the functions of LRP5 were blocked in mice. Last but not least, the expression levels of LRP5 increased during the osteogenesis of MC3T3-E1, while the levels of ß-catenin decreased in bone tissues from osteoporotic patients with vertebral compression fractures. In conclusion, we revealed miR-375-3p negatively regulated osteogenesis by targeting LRP5 and ß-catenin. In addition, loss of functions of LRP5 damaged bone formation in vivo. Clinically, miR-375-3p and its targets might be used as diagnostic biomarkers for osteoporosis and might be also as novel therapeutic agents in osteoporosis treatment. The relevant products of miR-375-3p might be developed into molecular drugs in the future. These molecules could be used in translational medicine.


Assuntos
Regulação da Expressão Gênica , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , MicroRNAs/genética , Osteogênese/genética , beta Catenina/genética , Regiões 3' não Traduzidas , Animais , Apoptose/genética , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Linhagem Celular , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos , Camundongos Knockout , Modelos Biológicos , Interferência de RNA , beta Catenina/metabolismo
20.
PLoS One ; 12(1): e0169998, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28085929

RESUMO

Bacterial adaptation to different hosts requires transcriptomic alteration in response to the environmental conditions. Laribacter hongkongensis is a gram-negative, facultative anaerobic, urease-positive bacillus caused infections in liver cirrhosis patients and community-acquired gastroenteritis. It was also found in intestine from commonly consumed freshwater fishes and drinking water reservoirs. Since L. hongkongensis could survive as either fish or human pathogens, their survival mechanisms in two different habitats should be temperature-regulated and highly complex. Therefore, we performed transcriptomic analysis of L. hongkongensis at body temperatures of fish and human in order to elucidate the versatile adaptation mechanisms coupled with the temperatures. We identified numerous novel temperature-induced pathways involved in host pathogenesis, in addition to the shift of metabolic equilibriums and overexpression of stress-related proteins. Moreover, these pathways form a network that can be activated at a particular temperature, and change the physiology of the bacteria to adapt to the environments. In summary, the dynamic of transcriptomes in L. hongkongensis provides versatile strategies for the bacterial survival at different habitats and this alteration prepares the bacterium for the challenge of host immunity.


Assuntos
Adaptação Fisiológica/genética , Biomarcadores/metabolismo , Gastroenterite/genética , Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neisseriaceae/genética , Gastroenterite/microbiologia , Humanos , Neisseriaceae/isolamento & purificação , RNA Bacteriano/genética , Estresse Fisiológico , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA